Controlled reduction for size selective synthesis of thiolate-protected gold nanoclusters Aun(n = 20, 24, 39, 40)

نویسندگان

  • Xiangming Meng
  • Zhao Liu
  • Manzhou Zhu
  • Rongchao Jin
چکیده

This work presents a controlled reduction method for the selective synthesis of different sized gold nanoclusters protected by thiolate (SR = SC2H4Ph). Starting with Au(III) salt, all the syntheses of Aun(SR)m nanoclusters with (n, m) = (20, 16), (24, 20), (39, 29), and (40, 30) necessitate experimental conditions of slow stirring and slow reduction of Au(I) intermediate species. By controlling the reaction kinetics for the reduction of Au(I) into clusters by NaBH4, different sized gold nanoclusters are selectively obtained. Two factors are identified to be important for the selective growth of Au20, Au24, and Au39/40 nanoclusters, including the stirring speed of the Au(I) solution and the NaBH4 addition speed during the step of Au(I) reduction to clusters. When comparing with the synthesis of Au25(SC2H4Ph)18 nanoclusters, we further identified that the reduction degree of Au(I) by NaBH4 also plays an important role in controlling cluster size. Overall, our results demonstrate the feasibility of attaining new sizes of gold nanoclusters via a controlled reduction route.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unraveling a generic growth pattern in structure evolution of thiolate-protected gold nanoclusters.

Precise control of the growth of thiolate-protected gold nanoclusters is a prerequisite for their applications in catalysis and bioengineering. Here, we bring to bear a new series of thiolate-protected nanoclusters with a unique growth pattern, i.e., Au20(SR)16, Au28(SR)20, Au36(SR)24, Au44(SR)28, and Au52(SR)32. These nanoclusters can be viewed as resulting from the stepwise addition of a comm...

متن کامل

Investigating the structural evolution of thiolate protected gold clusters from first-principles.

Unlike bulk materials, the physicochemical properties of nano-sized metal clusters can be strongly dependent on their atomic structure and size. Over the past two decades, major progress has been made in both the synthesis and characterization of a special class of ligated metal nanoclusters, namely, the thiolate-protected gold clusters with size less than 2 nm. Nevertheless, the determination ...

متن کامل

Beyond the staple motif: a new order at the thiolate-gold interface.

Staple motifs in the form of -RS(AuSR)x- (x = 1, 2, 3, etc.) are the most common structural feature at the interface of the thiolate-protected gold nanoclusters, Aun(SR)m. However, the recently solved structure of Au92(SR)44, in which the facets of the Au84 core are protected mainly by the bridging thiolates, challenges the staple hypothesis. Herein, we explore the surface sensitivity of the th...

متن کامل

Optimization of Thiolate Stabilized Gold Nanoclusters For Near Infrared Emission in Subcellular Imaging

Monothiolate protected gold nanoclusters with near IR luminescence underwent a five-toten fold enhancement of quantum efficiency by heating in the presence of excess thiols. Two monothiolate nanoclusters, mercaptosuccinic acid and tiopronin, were shown to benefit from this procedure. Emission maximum around 700-900 nm is favorable for bioimaging applications due to reduction of background signa...

متن کامل

Atomically Monodisperse Gold Nanoclusters Catalysts with Precise Core-Shell Structure

The emphasis of this review is atomically monodisperse Aun nanoclusters catalysts (n = number of metal atom in cluster) that are ideally composed of an exact number of metal atoms. Aun which range in size from a dozen to a few hundred atoms are particularly promising for nanocatalysis due to their unique core-shell structure and non-metallic electronic properties. Aun nanoclusters catalysts hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012